

Types of Samples

Random sampling	Every member of a population has an equal chance of being selected E.g. Pulling names out of a hat	For very large samples it provides the best chance of an unbiased representative sample	For large populations it is time- consuming to create a list of every individual.
Stratified sampling	Dividing the target population into important subcategories Selecting members in proportion that they occur in the population E.g. 2.5% of British are of Indian origin, so 2.5% of your sample should be of Indian origin and so on	A deliberate effort is made to make the sample representative of the target population	It can be time consuming as the subcategories have to be identified and proportions calculated
Volunteer sampling	Individuals who have chosen to be involved in a study. Also called self-selecting E.g. people who responded to an advert for participants	Relatively convenient and ethical if it leads to informed consent	Unrepresentative as it leads to bias on the part of the participant. E.g. a daytime TV advert would not attract full-time workers.
Opportunity sampling Interested?	Simply selecting those people that are available at the time. E.g. going up to people in cafés and asking them to be interviewed	Quick, convenient and economical. A most common type of sampling in practice	Very unrepresentative samples and often biased by the researcher who will likely choose people who are 'helpful'

Photo credit: McLeod, S. A. (2014). Sampling Methods. Retrieved from www.simplypsychology.org/sampling.html

Basic Terms and Concepts (1)

- **Population:** the universe of units from which the sample is to be selected
- **Sample:** the segment of population that is selected for investigation
- Sampling frame: list of all units
- Representative sample: a sample that reflects the population accurately
- **Sample bias:** distortion in the representativeness of the sample

Basic Terms and Concepts (2)

- Probability sample: sample selected using random selection
- Non-probability sample: sample selected not using random selection method
- Sampling error: difference between sample and population
- **Non-sampling error:** findings of research into difference between sample and population
- Non-response: when members of sample are unable or refuse to take part
- Census: data collected from entire population

Sampling Error

Definition: Difference between sample and population

- · Biased samples do not represent the population.
 - some groups are over-represented; others are underrepresented

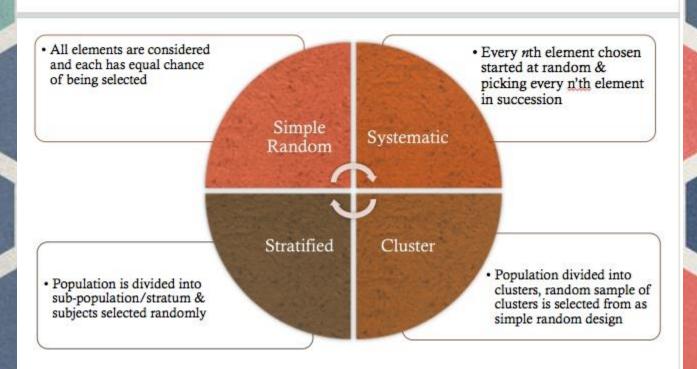
Sources of bias

 non-probability sampling, inadequate sample frame, nonresponse

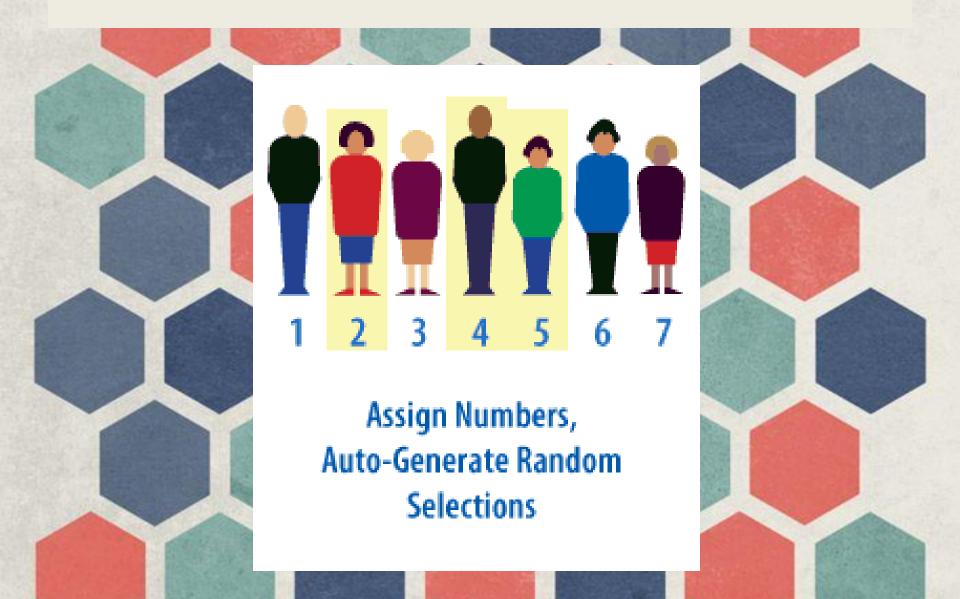
<u>Probability sampling reduces sampling error and allows for inferential statistics.</u>

Types of Probability Samples

Simple random sample


Systematic sample

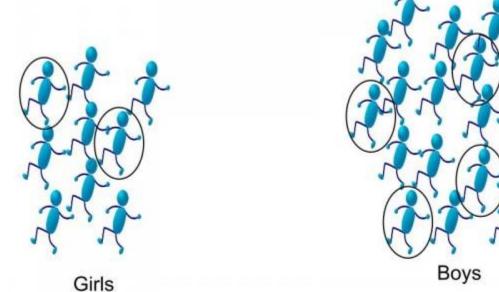
Stratified random sample


Multi-stage cluster sample

Nature of Probability Sampling

Probability Sampling

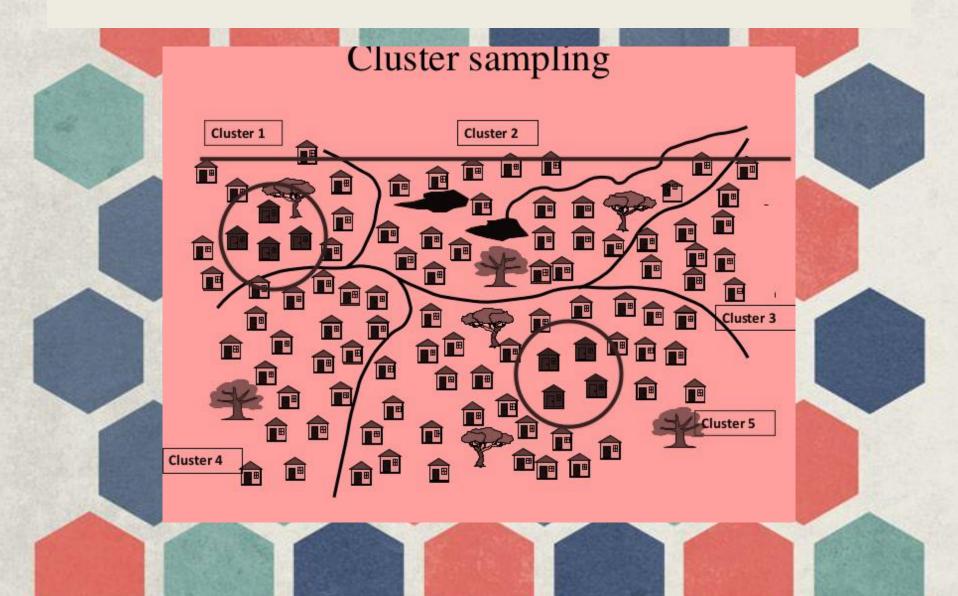
Simple Random Sampling


Systematic Sampling

Stratified Random Sampling

- Starting point is to categorise population into 'strata' (relevant divisions, or departments of companies for example).
- So the sample can be proportionately representative of each *stratum*.
- Then, randomly select within each category as for a simple random sample.

Consider This Example: Two Strata – Boys and Girls


There are twice as many boys as girls in the population...

...so you need twice as many boys as girls in a stratified sample.

Cluster Sampling

- Useful for widely dispersed populations
- First, divide population into groups (clusters) of units, like geographic areas, or industries, for example
- Sub-clusters (sub-groups) can then be sampled from these clusters, if appropriate
- Now randomly select units from each (sub)cluster
- Collect data from each cluster of units, consecutively

Cluster Sampling

Advantages of Probability Sampling

- Representative allows for generalization from sample to population
- Inferential statistical tests
- Sample means can be used to estimate population means
- Standard error (SE): estimate of discrepancy between sample mean and population mean
- 95% of sample means fall between +/- 1.96 SE from population mean

Sample Size

- 1. Absolute size matters more than relative size.
- 2. The **larger** the sample, the **more precise** and **representative** it is likely to be.
- 3. As **sample size** increases, *sampling error* decreases.
- 4. Important to be honest about the limitations of your sample.

 Bryman 2012: p.198

Factors Affecting Sample Size (1)

Time and cost

- after a certain point (n=1000), increasing sample size produces less noticeable gains in precision
- very large samples are decreasingly cost-efficient (Hazelrigg, 2004)

Non-response

- response rate = % of sample who agree to participate(or % who provide usable data)
- responders and non-responders may differ on a crucial variable

Factors Affecting Sample Size (2)

Heterogeneity of the population:

 the more varied the population is, the larger the sample will have to be

Kind of analysis to be carried out:

 some techniques require large sample (e.g. contingency table; inferential statistics)

Types of Non-probability Sampling (1)

1. Convenience sampling

- the most easily accessible individuals
- useful when piloting a research instrument
- may be a chance to collect data that is too good to miss

2. Snowball sampling

- researcher makes initial contact with a small group
- these respondents introduce others in their network

Types of Non-probability Sampling (2)

3. Quota sampling

- often used in market research and opinion polls
- relatively cheap, quick and easy to manage
- proportionately representative of a population's social categories (strata)
- but non-random sampling of each stratum's units
- interviewers select people to fit their quota for each category, so the sample may be biased towards those who appear friendly and accessible (e.g. in the street), leading to under-representation of less accessible groups

4. What about **Purposive** Sampling?

- 1. The form of sampling typically used in **qualitative** research.
- 2. Strategic in nature: individuals/cases are selected on the basis of their relevance to research questions.
- 3. Not possible to extrapolate results to the general population.
- 4. Important to have clear and specific **criteria** to determine **inclusion/exclusion** of units of analysis.

Sampling in Ethnography

- Often a combination of convenience and snowball sampling.
- May involve purposive sampling (a set of criteria).
- The researcher has to get the information from whoever is prepared to divulge it.
- Stratified sampling might be possible.

Limits to Generalization

- findings can only be generalized to the population from which the sample was selected
 - be wary of over-generalizing in terms of locality
- time, historical events and cohort effects

Panel and cohort studies are both types of longitudinal research design, in which a sample is surveyed on more than one occasion to monitor changes over time. In a panel study, such as the British Household Panel Survey, this is usually a randomly selected sample of people who are consulted on their views of particular topics. In a cohort study, such as the National Child Development Study, the sample is selected on the basis of a shared characteristic (such as date of birth), and studied periodically over a relatively long time.

results may no longer be relevant and so require updating (replication)

Important to remember!

Sampling is not just about people!!!!!!!

- Documents can be selected for their relevance to research questions
- Time periods need to be sampled if observations are made at different times of the day or on different days of the week
- Contexts need to be sampled if observations are made in different locations (Hammersley & Atkinson, 1995)

Summary: Keywords

 sample, population, sampling error, probability sampling, simple random, stratified, systematic, cluster, nonprobability sampling, purposive sampling, convenience, snowball, quota, generalizability of results, non-response, survey costs

SC111

 Carlos Gigoux and Poverty

Lecture 5 & 6. Inequality