People Analytics: Strategy and Practice

Introduction to regression analysis

Modelling

Model

$\frac{\text{Regression equation}}{Y = a + \beta_1 x_1 + \cdots \beta_n x_n + \varepsilon}$

Where Y – predicted values (dependent variable); a - intercept; β - Beta coefficient; x - independent variable; ε – error term

Regression fit and output

- Standard error is a key for our understanding of the accuracy of predictions
- It shows how widely the data points are scattered around the regression line

$$SE_{est} = SDy_{\sqrt{\frac{N}{N-2}}(1-r^2)}$$

 R² (R squared) or the coefficient of determination serves to identify how well the regression line fits the data [0;1]

$$R^{2} = 1 - \frac{SS_{res}}{SS_{tot}} = 1 - \frac{\sum(y - fi)^{2}}{\sum(y - \hat{y})^{2}}$$

Example (I)

• Assume we have two random variables: X and Y

X	Υ
1	1
2	2
3	1.3
4	3.75
5	2.25

• Are these two variables related to one another?

• Scatter plot

Example (III)

• Scatter plot

X

Ordinary Least Squares

- The best-fitting line in most of the cases is defined on the premise of the minimisation of the sum of the squared errors of prediction
- This procedure is termed Ordinary Least Squares (OLS)

 R² (R squared) or the coefficient of determination serves to identify how well the regression line fits the data [0;1]

$$R^{2} = 1 - \frac{SS_{res}}{SS_{tot}} = 1 - \frac{\sum(y - fi)^{2}}{\sum(y - \hat{y})^{2}}$$

Example (IV)

Regression parameters

x	Y	Υ'	Y-Y'	(Y-Y') ²
1	1	1.21	-0.21	0.044
2	2	1.635	0.365	0.133
3	1.3	2.06	-0.76	0.578
4	3.75	2.485	1.265	1.6
5	2.25	2.91	-0.66	0.436

Logistic regression

Logistic regression (I)

 Assume we have a binary response outcome variable (Yes-No kind of answer)

$$P(y=1)$$

• For example, in the WERS survey we used last time around there are 8136 union members as opposed to 13721 non-members

$$\mu = \frac{8136}{21857} = 0.372; P(y = 1) = 37.2\%$$

• What are the odds?
$$Odds = \frac{\pi_i}{1 - \pi_i} = \frac{0.372}{1 - 0.372} = 0.592$$

Logistic regression (II)

- Standard linear regression fails to deal with binary data
- Non-normal residuals, non-linear relationship and probabilities are discrete and locked between 0 and 1
- So we transform our model into a generalised linear one

$$Logit(\pi_i) = ln(\frac{\pi_i}{1-\pi_i}) = \beta_0 + \beta_1 X_i$$
$$ln\left(\frac{\pi_i}{1-\pi_i}\right) = [-\infty, \infty]$$

• In order to derive predicted probabilities we need to reverse the function

Logistic regression (III)

$$\left(\frac{\pi_i}{1-\pi_i}\right) = \exp(\beta_0 + \beta_1 X_i)$$

- What is the meaning of regression coefficients?
- Raw Betas show log of odds (interpretation differs slightly for categorical and continuous predictors)
- It is easy to get odds from log odds and then to derive probabilities