People Analytics: Strategy and Practice

Introduction to regression analysis

Modelling

Model

Reality

Regression equation
 $\mathrm{Y}=a+\beta_{1} x_{1}+\cdots \beta_{n} x_{n}+\varepsilon$

Where Y - predicted values (dependent variable);
a - intercept; β - Beta coefficient; x - independent variable; ε - error term

Regression fit and output

- Standard error is a key for our understanding of the accuracy of predictions
- It shows how widely the data points are scattered around the regression line

$$
S E_{e s t}=S D y \sqrt{\frac{N}{N-2}\left(1-r^{2}\right)}
$$

- R^{2} (R squared) or the coefficient of determination serves to identify how well the regression line fits the data [0;1]

$$
R^{2}=1-\frac{S S_{r e s}}{S S_{t o t}}=1-\frac{\sum(y-f i)^{2}}{\sum(\mathrm{y}-\hat{\mathrm{y}})^{2}}
$$

Example (I)

- Assume we have two random variables: X and Y

\mathbf{X}	\mathbf{Y}
1	1
2	2
3	1.3
4	3.75
5	2.25

- Are these two variables related to one another?

Example (II)

- Scatter plot

Example (III)

- Scatter plot

Ordinary Least Squares

- The best-fitting line in most of the cases is defined on the premise of the minimisation of the sum of the squared errors of prediction
- This procedure is termed Ordinary Least Squares (OLS)
- R^{2} (R squared) or the coefficient of determination serves to identify how well the regression line fits the data [0;1]

$$
R^{2}=1-\frac{S S_{r e s}}{S S_{t o t}}=1-\frac{\sum(y-f i)^{2}}{\sum(\mathrm{y}-\hat{\mathrm{y}})^{2}}
$$

Example (IV)

Regression parameters

\mathbf{X}	\mathbf{Y}	\mathbf{Y}^{\prime}	$\mathbf{Y - Y}$	$\left(\mathbf{Y - \mathbf { Y } ^ { \prime }) ^ { \mathbf { 2 } }}\right.$
$\mathbf{1}$	1	1.21	-0.21	0.044
2	2	1.635	0.365	0.133
$\mathbf{3}$	1.3	2.06	-0.76	0.578
4	3.75	2.485	1.265	1.6
5	2.25	2.91	-0.66	0.436

Logistic regression

Logistic regression (I)

- Assume we have a binary response outcome variable (Yes-No kind of answer)

$$
P(y=1)
$$

- For example, in the WERS survey we used last time around there are 8136 union members as opposed to 13721 non-members

$$
\mu=\frac{8136}{21857}=0.372 ; P(y=1)=37.2 \%
$$

- What are the odds? $O d d s=\frac{\pi_{i}}{1-\pi_{i}}=\frac{0.372}{1-0.372}=0.592$

Logistic regression (II)

- Standard linear regression fails to deal with binary data
- Non-normal residuals, non-linear relationship and probabilities are discrete and locked between 0 and 1
- So we transform our model into a generalised linear one

$$
\begin{gathered}
\operatorname{Logit}\left(\pi_{i}\right)=\ln \left(\frac{\pi_{i}}{1-\pi_{i}}\right)=\beta_{0}+\beta_{1} X_{i} \\
\ln \left(\frac{\pi_{i}}{1-\pi_{i}}\right)=[-\infty, \infty]
\end{gathered}
$$

- In order to derive predicted probabilities we need to reverse the function

Logistic regression (III)

$$
\left(\frac{\pi_{i}}{1-\pi_{i}}\right)=\exp \left(\beta_{0}+\beta_{1} X_{i}\right)
$$

- What is the meaning of regression coefficients?
- Raw Betas show log of odds (interpretation differs slightly for categorical and continuous predictors)
- It is easy to get odds from log odds and then to derive probabilities

