
What’s happening in this Document?

In the last two worksheets, we’ve looked at how to plot the relationship
between two categorical variables (through different kinds of bar charts) and
two continuous variables (through different kinds of scatterplots). We’ve also
alluded to relationships between continuous and categorical variables, such as
through our graph of how the tempo of Kendrick Lamar’s tracks have changed
with their release dates.

In this worksheet, we’re focusing on how the distributions of continuous
variables differ by categorical variables. You saw a bit of this in the first week,
when we looked at density curves and boxplots; now we’re going to do it a bit
more thoroughly.

Getting set up

As with the last few weeks, we’re going to start by loading some packages and
some data. As with the last few weeks again, we’re going to install and load a
new package, ggridges. ggplot2 has loads of different extensions, and ggridges
is one such example.

So, let’s load some packages…
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install.packages("ggridges") 
 

 

ggplot(data = kendrick) + 

aes(x = tempo) + 

geom_density() 

 

kendrick <- read_csv("https://bit.ly/kendrickdata") 
kanye <- read_csv("https://bit.ly/kanyedata") 

rihanna <- read_csv("https://bit.ly/rihannadata") 

beyonce <- read_csv("https://bit.ly/beyonce_data") 

queen <- read_csv("https://bit.ly/queen_data") 

maccas <- read.csv("https://bit.ly/mcdonalds_data") 

 

You may need to install ggridges if you get an error message:  
 

 

 

Let’s load some data. 
 

 

We are good to go! Let’s look at some distributions. 

 

Looking at distributions 
We’ve spent the last few weeks with the Kendrick Lamar data. Let’s continue this by 

looking at the distribution of tempo of his tracks: 

 

 

 

 

http://j.mp/SMI105Kendrick
http://j.mp/SMI105Kendrick
http://j.mp/SMI105Kanye
http://j.mp/SMI105Rihanna
http://j.mp/SMI105Beyonce
http://bit.ly/SMI105QueenShort
http://bit.ly/SMI105McDonalds


 
 

 

 

ggplot(data = kendrick) + 

aes(x = tempo) + 

geom_histogram() 

2. If we want to look at the distribution of a single continuous variable, one approach is to 

use a density curve. Another is to use a histogram. Let’s look at the same data with a 

histogram. 

 

 

Once we run this, we end up with some red text in the console. This is fine, but it might invite us to think 

about bins (effectively, the bars that make up the histogram) – do we want them to be wider or 

narrower? Do we want more or fewer of them? Let’s play around with bins and see what happens.  

3. We can play around with them by specifying either the number or the width of the bins, like so: 

 

 

 

ggplot(data = kendrick) + 

aes(x = tempo) + 

geom_histogram(bins = 15) 

 
ggplot(data = kendrick) + 

aes(x = tempo) + 

geom_histogram(binwidth = 15) 



 
 

 

 

ggplot(data = kendrick) + 

aes(x = tempo, fill = mode_name) + 

geom_histogram() 

 

 

4. Time for a second variable. Are Kendrick Lamar’s minor tracks slower than his major tracks? 
 

 

 

 

We have talked about stacked bar charts before, and this seems even more severe. 

 

 

 

 



 
 

 

 

ggplot(data = kendrick) + 

aes(x = tempo, colour = mode_name) + 

geom_density() 

 

5.  Let’s tweak this so that we can compare better. 

 

 

This helps, but has its own issues. Let’s try some alternatives. 

 

Back to density curves 
6. Let’s try answering that same question – are Kendrick Lamar’s minor or major tracks quicker? – with 

some density curves instead. 

 

 

 

ggplot(data = kendrick) + 

aes(x = tempo, fill = mode_name) + 

geom_histogram(bins = 15, 

position = "identity", 

alpha = .5) 



 
 

 

 

ggplot(data = kendrick) + 

aes(x = tempo) + 

geom_density() + 

facet_wrap(~ album_name) 

This is a bit more like it! These curves adjust for the fact that there’s different numbers of tracks in 

major and minor keys, and because they’re curves rather than histograms we can see how they fit 

together more straightforwardly. 

 

7. What about albums? Are Kendrick Lamar’s more recent albums quicker? 
 

 

 

 

 

 

 

This doesn’t work as well. Comparing two overlapping density curves is fairly straightforward to do, 

but comparing four is tricky; it’s not as easy to identify the overall trends for all four. (It’s also worth 

noting this comparison is a bit easier than it is for other artists - try it with the other data we’ve 

loaded). 

 

8. As ever, a good way to deal with four lots of information in one graph is to turn it into four 

graphs, with the facet_wrap() command. 

 

 

ggplot(data = kendrick) + 

aes(x = tempo, colour = album_name) + 

geom_density() 



 
 

 

 

Did you ever wonder what the tilde – ~ – was doing in the facet_wrap() parenthesis, when with most 

other parentheses it’s OK to just have the variable name?  

 

9. As an example, let’s look at how the tempo of Kendrick Lamar’s tracks across his albums vary by 

whether they’re in major or minor keys; this means we’re faceting by two variables. It also means we’re 

using facet_grid() rather than facet_wrap(). 

 

 

 

OK, we’re making progress!  

 

 

 

ggplot(data = kendrick) + 

aes(x = tempo) + 

geom_density() + 

facet_grid(mode ~ album_name) 



 
 

 

 

ggplot(data = kendrick) + 

aes(x = album_name, y = tempo) + 

geom_boxplot() 

 
ggplot(data = kendrick) + 

aes(x = album_name, y = tempo) + 

geom_violin() 

10. Let’s also consider two other ways to communicate this information: box plots and violin plots. 
 

 

 

 
 

 

 

 

 

 



 
 

 

 

ggplot(data = queen) + 

aes(album_name, tempo) + 

geom_boxplot() 

Moving to Queen 
11. What happens when we’re looking at a categorical variable with more than four levels? Queen 

released a lot of albums, let’s look at Queen. (As with Worksheet 2, but different from the last worksheet, 

this is a version of the data where I’ve stripped out non-studio albums.) 

 

This is basically impossible to read because of the number of different albums.  

 

12. One easy way around this problem is just to swap our axes over. 
 

 

 

 

ggplot(data = queen) + 

aes(album_name, tempo) + 

geom_boxplot() + 

coord_flip() 



 
 

 

 

ggplot(data = queen) + 

aes(fct_reorder(album_name, dmy(album_release_date)), 

tempo) + 

geom_boxplot() + 

coord_flip() 

But we want them in a different order; here, they’re just chronological. In our last worksheet, I 

showed you the factor() command, which is a powerful way of organising your categorical variables. 

What I didn’t show you is that sometimes it’s easier. We can reorder our factor levels using the 

reorder() command 

13. If we want to reorganise our albums based on when they came out, we can do it like so. 

 

What’s happened here? Everything’s the same except the first mapping in the aes() parenthesis, so let’s 

look through that. 

we start with fct_reorder(). That indicates we’re using a categorical (or factor) variable, with levels 

that are different from the defaults. 

the first thing in the fct_reorder() bracket is the variable we want to put on that axis: 

album_name. But while we’d normally close the bracket here, instead we have a comma, 

anticipating… 

the variable the basis on which we’re reordering that categorical variable. Here, we want to 

reorder according to when the album came out; that information’s contained in 

album_release_date… which we need to surround with dmy(), to indicate it’s a date of the 

format DD-MM-YYYY. 

 

Exhausting? But, again, none of these individual bits is that complicated, there’s just a lot of them. 

 

 



 
 

 

 

ggplot(data = queen) + 

aes(fct_reorder(album_name, tempo), tempo) + 

geom_boxplot() + 

coord_flip() 

14. And if we want to reorder the categories so that we’re reorganising the boxplots from highest to 

lowest, we can do that with another reorder() command. 

 

The difference here is that earlier we were reordering according to album_release_date; here, we’re 

reordering according to tempo. 

 

  



 
 

 

 

ggplot(data = queen) + 

aes(x = tempo, 

y = fct_reorder(album_name, dmy(album_release_date))) + 

geom_density_ridges() 

 

ggplot(data = queen) + 

aes(x = tempo, 

y = fct_rev(fct_reorder(album_name, 

dmy(album_release_date)))) + 

geom_density_ridges() 

Ridgeline plots (Also known as joyplots.) 
15. Did you manage to load ggridges earlier? Let’s find out. 

 

I really like ridgeline plots, which are a fairly new innovation in data visualisation. I think they make it more 

straightforward to compare distributions of a continuous variable across lots of different categories, as in 

this case (I like them for fewer categories as well, but I think they’re particularly useful here). 

However, one issue is that, by default, the y axis goes from smaller numbers at the bottom to bigger 

numbers at the top. Normally, when we’re presenting a chronological list, the earliest items go at the 

top, and the latest at the bottom; here, we’ve effectively got the opposite.  

16. So, let’s turn this graph upside down. 

 



 
 

 

 

ggplot(data = queen) + 

aes(x = tempo, 

y = fct_reorder(album_name, track_popularity)) + 

geom_density_ridges() 

names(maccas) 

 

This is clumsy, but it works. What we’ve done is we’ve wrapped the existing y aesthetic mapping – 

reorder(album_name, dmy(album_release_date)) – which included a lot more brackets than we’re used 

to, in yet another set of brackets, preceded by the fct_rev() command. fct_rev() reverses the order of 

levels in a factor, so it’s often useful in this kind of context. 

17. We can also reorder from high to low, as we did before. 
 

 

 

 

Generating new variables 

A lot of the time, we can make all the visualisations we want based not only on a single dataset, but 

also on variables provided in the dataset. Sometimes, though, we need to generate new variables. Let’s 

look at an example. 

 

The maccas data is what the Economist’s Big Mac index is based on; it’s a measure of purchasing power 

in different parts of the world. (You can read more about the Big Mac index, where the data’s from, and 

how it’s compiled at this link (https://github.com/TheEconomist/big-mac-data). 

You can see it contains a few different variables: the name of the country, the currency code, the price 

of a Big Mac in the local currency, the country’s GDP in US dollars, the exchange rate between the local 

currency and the US dollar, and the date of the observation. Maybe we want to know what the 

relationship is between GDP and the price of Big Macs; are they cheaper in countries with lower GDPs? 

 

One variable that isn’t included is the price of a Big Mac in US dollars. A pound sterling’s worth (just) 

https://github.com/TheEconomist/big-mac-data


 
 

 

 

maccas %>% 

mutate(price_dollars = local_price/dollar_ex) %>% 

filter(date == "2018-07-01") %>% 

ggplot() + 

aes(x = GDP_dollar, y = price_dollars) + 

geom_point() 

more than a US dollar; an Australian dollar’s worth less than a US dollar. So comparing prices in local 

currencies isn’t that useful; we need a variable for how much a Big Mac costs in a single currency. And 

we might as well use US dollars (though we don’t have to). 

 

18. Let’s start by generating a new variable, using the mutate() command. 
 

 

 

 

This is similar to what we’ve seen before; we’ve started with data, added a pipe, and specified what we 

want to do to the data. Here, we want a new variable, which I’ve called price_dollars: I’ve generated this by 

dividing the local price by the dollar exchange rate. The forward slash - / - means divide by; you can add 

variables with +, subtract with -, and multiply with *. 

A problem here, though, is the number of observations.  

19. What if we just want the current relationship? To do this, we can limit our observations to the most 

recent wave of data, by going back to filter(): 
 

 

 

maccas %>% 

mutate(price_dollars = local_price/dollar_ex) %>% 

ggplot() + 

aes(x = GDP_dollar, y = price_dollars) + 

geom_point() 



 
 

 

 

maccas %>% 

mutate(price_dollars = local_price/dollar_ex) %>% 

ggplot() + 

aes(x = GDP_dollar, y = price_dollars) + 

geom_point() + 

facet_wrap(~ date) 

 
 

20. What if we wanted to know how this relationship had changed over time? An obvious starting point 

is to facet by date. 

 

 

There’s an obvious problem here, though. Not all the observations include all the data we want, which 

is why loads of our facets are empty. To get around this problem, we can use na.omit: this means we’re 

just looking at complete cases, rather than cases with missing data.  

 



 
 

 

21. Here’s how we use it. 

 
 

 
 

 

 

 

Bonus Exercise 
 

There is only one bonus task for this worksheet, but it’s a tricky one. 

 

Please draw a ridgeline plot of the prices of a Big Mac in each country in the world, expressed as 

price in dollars as a fraction of GDP per head in dollars in each of those countries, sorted highest-

to-lowest. So I want to see a graph of the range of those values in each country over the period that 

the Economist had data for, with the country where a Big Mac costs the largest proportion of GDP 

per head at the top, and the country where a Big Mac costs the smallest proportion of GDP per 

head at the bottom. 

There will be some countries with missing ridgelines. This is fine - these are the cases where there's only 

one or two observations per country, and ggridges can't estimate a density curve with data that's so 

limited. 

 

 

na.omit(maccas) %>% 

mutate(price_dollars = local_price/dollar_ex) %>% 

ggplot() + 

aes(x = GDP_dollar, y = price_dollars) + 

geom_point() + 

facet_wrap(~ date) 
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