
What’s Happening in this Document?

In this worksheet we’re going to have a bit of a change of pace. In the last few
weeks, we’ve introduced how to graph different kinds of variables and different
kinds of relationships, including thinking about different ways to get our data
into the kind of format that works for the graphs we want to draw.

While the graphs we’ve been drawing have been looking increasingly
professional, they haven’t been very flexible: we’ve been using default colour
schemes, default layouts, and so on. While we looked at how to add labels, and
change the order of levels in a factor, we haven’t done much else. What if you
like different colour schemes? What if you don’t like your scatterplots to have
grey backgrounds?

We also haven’t discussed what we do once we’ve made our graphs. I have
showed you how to export graphs but are there other ways? And how do we
integrate them into other things we’re doing? Let’s address those issues now.

Getting Started

You know how this works at this point! Let’s load some packages, including a
new one:

Data visualisation
Lab Worksheet 5

Creator: Dr Mark Taylor

Now let’s load some data:

Back to scatterplots, with some colour

1. Let’s remind ourselves of the relationship between tempo and danceability among Kendrick

Lamar’s tracks, coloured according to which album they’re on.

This looks OK (except for the legend taking up more than half the space, but you’ll remember how we

can deal with this issue.) But what if we want to use a different colour scheme?

http://j.mp/SMI105Kendrick
http://j.mp/SMI105Kendrick
http://j.mp/SMI105Kanye
http://j.mp/SMI105Rihanna
http://j.mp/SMI105Beyonce
http://bit.ly/SMI105QueenShort

2. Let’s start with Colourbrewer and Viridis. Both come preloaded with ggplot2, so we don’t need to do

anything special to load them. Let’s start with a colour scheme from ColorBrewer:

… and now let’s follow it up with a colour scheme from viridis:

With viridis, guessing how you might find the other colour schemes is easy: you just swap out “D” for

different letters of the alphabet and see what happens. For ColorBrewer, it’s a bit less obvious: Google

ColorBrewer and R and the full list of palettes will come up.

3. One other thing to mention on these colour schemes is that, with ColorBrewer, you specify the colour

scheme to use in the same way regardless of whether you’re using a continuous or discrete colour

scheme. With viridis, it’s a bit different; if you’re mapping colour to a discrete variable, you want to add

scale_colour_viridis_d(); if you’re mapping colour to a continuous variable, you want to add

scale_colour_viridis_c().

Back to bar charts, with some colour

4. Let’s revisit another graph, from a few worksheets ago: the balance between major and minor on

each of Kendrick Lamar’s albums.

5. What if you wanted your own colour scheme? What if you thought of major tracks being a particular

shade of purple, and minor tracks being a particular shade of green?

You could do something like this, with scale_fill_manual. (You can imagine a similar thing for

scale_colour_manual if you were colouring a scatterplot.) You might wonder how I knew to use the

colours darkorchid2 and forestgreen. All the colours available in R are available at this guide

(http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf).

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

Tidying up facets
6. Let’s revisit facets, by looking at how the distribution of keys varies across Kendrick Lamar albums.

Any problems with this? One issue is that there’s several albums that don’t include every key. This isn’t a

problem per se, but you can imagine other settings where it is, particularly if you’re looking at a categorical

variable that varies a lot according to your faceting variable. You can also imagine settings where the

number of observations within facets varies a lot: under those circumstances, having a common y-axis

might make it difficult to understand what’s going on in some facets.

7. What we can do is free up the axes: x, y, or both? Here’s how we do it. Compare the following three

options: which one works best? Which might work best in other contexts?

facet_wrap(~ album_name,

Who likes Tufte?
Edward Tufte is considered by many as a pioneer in the field of data visualization) and some people really

like Tufte. If you’re one of them, you might find yourself thinking “these boxplots use up too much ink, I

wish ggplot2 would let me use the Tufte approach”. It’s easier to make your graphics look like Tufte’s if

you’ve loaded the ggthemes package (which hopefully you were able to do from the start of this

workshop).

8. If you want to look at how the tempo across Drake’s different albums have varied, why not compare:

with:

geom_tufteboxplot()

(My instinct is that there are better ways to communicate this information than in box plots. But if you

like box plots, and you like Tufte, here’s a way of indulging that combination.)

Prepackaged themes
You can change each element of a ggplot object separately, if you want. You can change the background

colour, the colours of individual objects, the fonts used in the legend, and so on. Sometimes this is useful

and practical: for example, if you’re a journalist who’s using a house style, it’s easier to manually set this

up using ggplot2 than it is to tweak the graph afterwards using Illustator or Photoshop. (This isn’t a

made-up example: you can read things John Burn-Murdoch at the FT has written about arranging his

ggplot2 workflow so that ggplot graphics can go straight into the paper.)

You can also use prepackaged themes, if there are particular styles that you want to mimic. Not

everyone likes the grey grid with white gridlines that ggplot2 uses by default, for example (I’m not the

biggest fan.) Several themes come preloaded with ggplot2, and ggthemes adds several more; if you’ve

found another theme that you like the look of, there’s often a package available for that as well, you’ll just

have to install it.

9. Let’s say we want to tweak our last graph so that we lose the grey grid, swapping it for something a bit

more minimal.

How do you feel about that?

Having done that, type it out again, but pause once you’ve typed as far as theme_. This will give you a

sense of which other themes are available. For example, we can try the Economist one:

Some of them I’d advise against – the Excel theme is only really in there as a joke, for example – but see

what you like and what you get on with!

Annotations
10. Our graphics have been fairly sparse so far. This isn’t a problem per se – sparse graphs are often

clear graphs – but you might find yourself wondering how it is that you sometimes see graphics with

text on them. This is broadly pretty easy to do in ggplot, and this is how.

Here, what I’ve done is add an annotate() in my ggplot2 code. You can see it needs four arguments: what

kind of annotation it is, where it’s going on each of the x and y axes, and a label. (You’ll also note I’ve

broken the label up into three lines).

You’ll often want to annotate graphs if you think particular areas of them are interesting. (You might also

want to annotate particular points, and you won’t always want to do this manually. We won’t go over this

now, but if this is likely to be a focus for you, I’d recommend the ggrepel package.)

annotate("text",

y=0.9,

Exporting graphics
Once we’ve made graphs, then what? We don’t want to take a photo on our phones, at the very least.

I’ve already showed you in a video that there’s a little “export” button in the graphics pane.

However, you can also use ggsave command. One thing about ggsave is it starts to raise questions of

what the Working Directory is. When you save graphics, you’re saving graphics somewhere, and you need

to know where that is. Let’s find out with the getwd() command.

This tells you what you have currently set as your Working Directory. If you are not happy with where

your Working Directory is, then please go watch the ‘SMI105 Worksheet 2’ video to find out how to

change it!

Once we are happy with where what our Working Directory has been saved as, we can both load data

from this folder, like so (imagine I’ve saved drake.csv in this folder):

but I can also save the graphic I plotted most recently:

One thing you’ll sometimes want to do is change the dimensions of the graph – maybe you want a long

and thin graph, maybe you want a short and fit graph. Here’s how you can change the dimensions of a

graph (note that by default ggsave uses inches as its units).

And so on (You can also export to different file formats, like .jpg, and .eps; if you want to do this, just

change the file extension in the command).

getwd()

	SMI105 Lab Worksheet 5.pdf
	Data Vis Lab Worksheet 5.pdf

