
What’s Happening in this Document?

Maps! 

We’re also starting to load data locally, rather than from the web. In the first
half of the semester, we pulled data from the web; this is fine when we’ve got a
web host, or what we need is just a small file, but when we’re working with
more or bigger files this often isn’t practical.

In addition to this, we’re going to combine a couple of datasets together. We’ll
go into some more detail in the coming weeks about how to do this.

To go with our worksheet, we have .zip file that contains a few different things.
Please make sure you save this file where you have set your working directory.

Health Warning

Broadly, drawing maps is more computationally intensive than drawing the
other kinds of graphs that we’re drawing on this module. For this reason, it
generally takes longer for ggplot2 to draw the maps we’re doing in this
document than the graphs we have done previously, and sometimes won’t
draw them at all. This is particularly the case if you’re on a Mac rather than on 
a Windows machine. If this happens, don’t panic - it’s normal.

Data visualisation
Lab Worksheet 6

Creator: Dr Mark Taylor



 
 

  

 

library(tidyverse) 

library(sf) 

 

install.packages(“sf”) 

 

westminster <- read_sf(dsn = ".", layer = "westminster_const_region")  

airports <- read_sf(dsn = ".", layer = "airports_gb") 

housing <- read.csv("housing.csv") 

h_and_w <- inner_join(westminster, housing, id = "CODE") 

Getting started 
Let’s get started by installing a package:  

 

Now let’s load some packages: 
 

 

The sf package is new. sf standards for simple features, and it’s a package specifically for geographic 

data using R. By contrast, you’ve seen tidyverse before.  

And then let’s load some data. Please make sure you have downloaded the zip files from the Q-Step 

Website (or from this link: https://bit.ly/lab_worksheet_6), that you have extracted the files, and that you 

have saved them to where you have set your working directory: 

 

OK, there’s a few things going on here. 

Loading housing is relatively straightforward; it’s a read.csv() command, with a csv name in the folder. 

You’ll note that it’s not a URL, like you’ve seen before; that’s because it’s in the same folder as this R 

project. 

Loading westminster is a bit more complicated. You’ll note that there’s several different files in this folder 

that start “westminster_const_region”; this is because shapefiles, which are the flavours of spatial data that 

we’re working with, tend to consist of several different files, including geography, projections, and 

databases with data frames in. So there’s two elements in the bracket. The first, dsn, specifies where 

we’re looking; the . means we’re looking in the same folder as the files we’re using. (I’d generally 

recommend this.) The second, layer, asks for the name of the layer we’re working with; in this instance, 

that’s westminster_const_region. 

Loading airports is exactly the same as loading westminster, as it’s another shapefile. 

 

Merging 

The last thing we did was to merge two files. westminster is a shapefile of parliamentary constituencies, 

without much information about them; housing is a data frame that contains information about how 

many people in each constituency own their home, without much information about what those 

constituencies look like. In merging the two files, we’ve now got a shapefile which includes information 

about how many people own their homes. (We’ll do this more systematically in our next worksheet) 



 
 

  

 

ggplot(data = airports) + 

geom_sf() 

 

ggplot(data = westminster) + 

geom_sf() 

Drawing maps 
1. Let’s draw some maps. Specifically, let’s start by drawing a map of where different airports are. 

 

 

You’ll note that this is the shortest ggplot we’ve run so far; there’s no aesthetic mappings. What we have 

is a bunch of simple features; each observation in the airports data comes with longitude and latitude, 

which are effectively x and y coordinates. 

While this probably looks vaguely like a map of the UK, it’s not exactly what we’re aiming for.  

2. What we can do as an alternative is draw a map of each of Britain’s parliamentary constituencies, 

using the westminster data, like so. (This will probably take a little while to load; don’t panic if that 

happens. This might be a good opportunity to make a cup of tea.) 

 

OK, this is looking familiar! Let’s colour it in. 



 
 

  

 

Colouring in 
3. How do we add an aesthetic mapping to a map? The same way we’ve been adding aesthetic 

mappings to everything else. Let’s extend what we’ve done here by colouring in each of the UK’s 

parliamentary constituencies according to the numbers of people who own their homes, as opposed 

to renting (or living rent free, etc.) 
 

 

 

 

This is exactly the same kind of thing we’ve seen before. We’ve specified data, an aesthetic mapping 

(putting 

% owned in fill), a geometric object (sf), and tidied up a bit (changed the colour scheme to viridis). 

 

Binning colour schemes 
 

We’re currently using a continuous colour scheme. If you’ve got incredibly sharp eyes, you can distinguish 

between an area that has 61% of its residents in owned homes and an area with 62%. 

But most people can’t. There’s also a problem here in that there’s a few areas (mostly in London) with 

very low rates of home ownership - around a third - that distort the overall picture. 

 

 

ggplot(data = h_and_w)+ 

aes(fill = percent_owned) + 

geom_sf() + 

scale_fill_viridis_c() 



 
 

  

 

h_and_w %>% 

mutate(percent_owned_bin = cut_interval(percent_owned, 6)) %>% 

ggplot() + 

geom_sf(aes(fill = percent_owned_bin)) + 

scale_fill_viridis_d() 

4.  As an alternative, let’s bin these categories. There’s two approaches to binning that I want to flag; 

there’s others, but this is a starting point. 

 

 

 

What have we done here? 

You’ll remember mutate() from before, as a method of generating new variables. What mutate’s doing 

here is generating a new variable – percent_owned_bin – based on the percent_owned variable. 

Instead of doing maths to it, such as by dividing as we saw before, we’re cutting it in such a way that 

we’re generating a categorical variable, using the cut_interval function. Within this bracket, we’re 

specifying which variable we want to turn into a discrete variable, and specifying the number of bins we 

want. Following this, we continue as before, running a ggplot with our new variable. The only difference 

is we’re now using scale_fill_viridis_d, because this is now a discrete rather than continuous variable. 

Here, you’ll see we have six categories with equal ranges: 20% to 31%, 31% to 42%, 42% to 53%, and so 

on. But there’s more constituencies in the higher categories than the lower ones; you’ll see most of the 

map is green or yellow. 

 

 



 
 

  

 

h_and_w %>% 

mutate(percent_owned_bin = cut_number(percent_owned, 6)) %>% 

ggplot() + 

geom_sf(aes(fill = percent_owned_bin)) + 

scale_fill_viridis_d() 

 

h_and_w %>% 

mutate(percent_owned_bin = cut_number(percent_owned, 6)) %>% 

ggplot() + 

geom_sf(aes(fill = percent_owned_bin)) + 

scale_fill_viridis_d(labels = 

c("less than 55%", 

"55%-63%", 

"63-67%", 

"67-70%", 

"70-73%", 

"more than 73%")) + 

labs(fill = "% of households owned 

(including with a mortgage)", 

title = "Lots of renters in urban areas") 

5. What if, instead, we wanted quartiles; what if we wanted to generate categories that would have 

equal numbers of constituencies in each? We can do this by changing cut_interval – which generates 

categories of equal intervals, but different numbers of observations – for cut_number, which 

generates categories of equal numbers of observations, but different intervals. Like so:

 

 

Last couple of things 
6. First, let’s tidy up that last graph. The intervals look OK, but they’re a bit messy. We’ve seen 

the labs() command before, which can address the title of the legend; let’s also address the 

labels for each of the categories. 



 
 

  

 

h_and_w %>% 

mutate(percent_owned_bin = cut_number(percent_owned, 6)) %>% 

ggplot() + 

geom_sf(aes(fill = percent_owned_bin)) + 

scale_fill_viridis_d(labels = 

c("less than 55%", 

"55%-63%", 

"63-67%", 

"67-70%", 

"70-73%", 

"more than 73%")) + 

labs(fill = "% of households owned 

(including with a mortgage)", 

title = "Lots of renters in London") + 

coord_sf(crs = 3857) 

 

This is starting to look a bit better. (There’s still an issue with respect to the level of detail – it’s easier to 

see what’s going on in rural parts of Wales than it is in densely populated urban areas, for example – but 

we’ll come back to that.) 

One last thing is coordinate systems. By definition any map on a screen involves a certain level of 

distortion, as we’re portraying a three-dimensional object in two- dimensional space. (This gets worse as 

the amount of the world we’re drawing gets bigger; a map of Sheffield is probably less distorted than a 

map of the northern hemisphere.) 

7. We can tweak coordinate systems in ggplot2 and in sf like so: 
 

 

 

 

 



 
 

  

 

h_and_w %>% 

mutate(percent_owned_bin = cut_number(percent_owned, 6)) %>% 

ggplot() + 

geom_sf(aes(fill = percent_owned_bin)) + 

scale_fill_viridis_d(labels = 

c("less than 55%", 

"55%-63%", 

"63-67%", 

"67-70%", 

"70-73%", 

"more than 73%")) + 

labs(fill = "% of households owned 

(including with a mortgage)", 

title = "Lots of renters in London") + 

coord_sf(crs = 22275) 

 
What we’ve done here is manually specified the coordinate system with coord_sf. Inside the bracket 

we’ve specified crs, which stands for coordinate reference systems. If you look closely, you can see 

this map, where CRS = 3857, looks a bit different from the earlier one; it’s not night and day, but 

there’s differences (this is known as pseudo-Mercator).  

 

8. To get a sense of why they might have more major implications, try the following: 



 
 

  

 

Why do you think this look weird? 

 

 

Bonus Exercise 
 

Here is what I am asking you to do: 

there’s another spreadsheet  that we extracted from our zip file called degrees.csv. This 

contains data on what fraction of adults in each parliamentary constituency hold degrees. 

Please load it into R; 

please then merge that file with the new file we created, which we called h_and_w; 

please draw a map of the fraction of adults in each parliamentary constituency with degrees, 

treating the DEGREES variable as continuous. 
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